PREFACE
We have taken the opportunity to refresh both the content and presentation of this
text while—as for all its editions—keeping it flexible to use, accessible to students,
broad in scope, and authoritative. The bulk of textbooks is a perennial concern: we
have sought to tighten the presentation in this edition. However, it should always be
borne in mind that much of the bulk arises from the numerous pedagogical features
that we include (such as Worked examples and the Data section), not necessarily from
density of information.
The most striking change in presentation is the use of colour. We have made every
effort to use colour systematically and pedagogically, not gratuitously, seeing as a
medium for making the text more attractive but using it to convey concepts and data
more clearly. The text is still divided into three parts, but material has been moved
between chapters and the chapters have been reorganized. We have responded to the
shift in emphasis away from classical thermodynamics by combining several chapters
in Part 1 (Equilibrium), bearing in mind that some of the material will already have
been covered in earlier courses. We no longer make a distinction between ‘concepts’
and ‘machinery’, and as a result have provided a more compact presentation of ther-
modynamics with less artificial divisions between the approaches. Similarly, equilib-
rium electrochemistry now finds a home within the chapter on chemical equilibrium,
where space has been made by reducing the discussion of acids and bases.
In Part 2 (Structure) the principal changes are within the chapters, where we have
sought to bring into the discussion contemporary techniques of spectroscopy and
approaches to computational chemistry. In recognition of the major role that phys-
ical chemistry plays in materials science, we have a short sequence of chapters on
materials, which deal respectively with hard and soft matter. Moreover, we have
introduced concepts of nanoscience throughout much of Part 2.
Part 3 has lost its chapter on dynamic electrochemistry, but not the material. We
regard this material as highly important in a contemporary context, but as a final
chapter it rarely received the attention it deserves. To make it more readily accessible
within the context of courses and to acknowledge that the material it covers is at home
intellectually with other material in the book, the description of electron transfer
reactions is now a part of the sequence on chemical kinetics and the description of
processes at electrodes is now a part of the general discussion of solid surfaces.
We have discarded the Boxes of earlier editions. They have been replaced by more
fully integrated and extensive Impact sections, which show how physical chemistry is
applied to biology, materials, and the environment. By liberating these topics from
their boxes, we believe they are more likely to be used and read; there are end-of-
chapter problems on most of the material in these sections.
In the preface to the seventh edition we wrote that there was vigorous discussion in
the physical chemistry community about the choice of a ‘quantum first’ or a ‘thermo-
dynamics first’ approach. That discussion continues. In response we have paid particu-
lar attention to making the organization flexible. The strategic aim of this revision
is to make it possible to work through the text in a variety of orders and at the end of
this Preface we once again include two suggested road maps.
The concern expressed in the seventh edition about the level of mathematical
ability has not evaporated, of course, and we have developed further our strategies
for showing the absolute centrality of mathematics to physical chemistry and to make
it accessible. Thus, we give more help with the development of equations, motivate
them, justify them, and comment on the steps. We have kept in mind the struggling
student, and have tried to provide help at every turn.
We are, of course, alert to the developments in electronic resources and have made
a special effort in this edition to encourage the use of the resources on our Web site (at
www.whfreeman.com/pchem8) where you can also access the eBook. In particular,
we think it important to encourage students to use the Living graphs and their con-
siderable extension as Explorations in Physical Chemistry. To do so, wherever we
call out a Living graph (by an icon attached to a graph in the text), we include an
Exploration in the figure legend, suggesting how to explore the consequences of
changing parameters.
Overall, we have taken this opportunity to refresh the text thoroughly, to integrate
applications, to encourage the use of electronic resources, and to make the text even
more flexible and up to date.
Oxford P.W.A.
Portland J.de P.
DOWNLOAD
We have taken the opportunity to refresh both the content and presentation of this
text while—as for all its editions—keeping it flexible to use, accessible to students,
broad in scope, and authoritative. The bulk of textbooks is a perennial concern: we
have sought to tighten the presentation in this edition. However, it should always be
borne in mind that much of the bulk arises from the numerous pedagogical features
that we include (such as Worked examples and the Data section), not necessarily from
density of information.
The most striking change in presentation is the use of colour. We have made every
effort to use colour systematically and pedagogically, not gratuitously, seeing as a
medium for making the text more attractive but using it to convey concepts and data
more clearly. The text is still divided into three parts, but material has been moved
between chapters and the chapters have been reorganized. We have responded to the
shift in emphasis away from classical thermodynamics by combining several chapters
in Part 1 (Equilibrium), bearing in mind that some of the material will already have
been covered in earlier courses. We no longer make a distinction between ‘concepts’
and ‘machinery’, and as a result have provided a more compact presentation of ther-
modynamics with less artificial divisions between the approaches. Similarly, equilib-
rium electrochemistry now finds a home within the chapter on chemical equilibrium,
where space has been made by reducing the discussion of acids and bases.
In Part 2 (Structure) the principal changes are within the chapters, where we have
sought to bring into the discussion contemporary techniques of spectroscopy and
approaches to computational chemistry. In recognition of the major role that phys-
ical chemistry plays in materials science, we have a short sequence of chapters on
materials, which deal respectively with hard and soft matter. Moreover, we have
introduced concepts of nanoscience throughout much of Part 2.
Part 3 has lost its chapter on dynamic electrochemistry, but not the material. We
regard this material as highly important in a contemporary context, but as a final
chapter it rarely received the attention it deserves. To make it more readily accessible
within the context of courses and to acknowledge that the material it covers is at home
intellectually with other material in the book, the description of electron transfer
reactions is now a part of the sequence on chemical kinetics and the description of
processes at electrodes is now a part of the general discussion of solid surfaces.
We have discarded the Boxes of earlier editions. They have been replaced by more
fully integrated and extensive Impact sections, which show how physical chemistry is
applied to biology, materials, and the environment. By liberating these topics from
their boxes, we believe they are more likely to be used and read; there are end-of-
chapter problems on most of the material in these sections.
In the preface to the seventh edition we wrote that there was vigorous discussion in
the physical chemistry community about the choice of a ‘quantum first’ or a ‘thermo-
dynamics first’ approach. That discussion continues. In response we have paid particu-
lar attention to making the organization flexible. The strategic aim of this revision
is to make it possible to work through the text in a variety of orders and at the end of
this Preface we once again include two suggested road maps.
The concern expressed in the seventh edition about the level of mathematical
ability has not evaporated, of course, and we have developed further our strategies
for showing the absolute centrality of mathematics to physical chemistry and to make
it accessible. Thus, we give more help with the development of equations, motivate
them, justify them, and comment on the steps. We have kept in mind the struggling
student, and have tried to provide help at every turn.
We are, of course, alert to the developments in electronic resources and have made
a special effort in this edition to encourage the use of the resources on our Web site (at
www.whfreeman.com/pchem8) where you can also access the eBook. In particular,
we think it important to encourage students to use the Living graphs and their con-
siderable extension as Explorations in Physical Chemistry. To do so, wherever we
call out a Living graph (by an icon attached to a graph in the text), we include an
Exploration in the figure legend, suggesting how to explore the consequences of
changing parameters.
Overall, we have taken this opportunity to refresh the text thoroughly, to integrate
applications, to encourage the use of electronic resources, and to make the text even
more flexible and up to date.
Oxford P.W.A.
Portland J.de P.
DOWNLOAD
0 comments:
Post a Comment